مهندسی پزشکی

مقالات مهندسی پزشکی

مهندسی پزشکی

مقالات مهندسی پزشکی

۱۱۵ مطلب با موضوع «روباتیک» ثبت شده است

اثر پیزو الکتریک ، قابلیت بعضی مواد است برای تبدیل انرژی مکانیکی به انرژی الکتریکی و تبدیل انرژی الکتریکی به انرژی مکانیکی. تولید اختلاف پتانسیل الکتریکی در برخی بلورهای نارسانا مثل کوارتز تحت کشش یا فشار. علامت پتانسیلهای دو وجه بلور در دو حالت فشردگی یا کشیدگی معکوس هم ارزند و هر چه میزان فشار کشش بیشتر باشد، اختلاف پتانسیل تولید شده بیشتر است. اثر معکوس پیزو الکتریک نیز در این معنی تغییر شکل آنها بر اثر اعمال اختلاف پتانسیل الکتریکی بین دو وجه روبروی آنهاست. اگر دو وجه روبرویی در یک هر یک از این بلورها را به اختلاف پتانسیل متناوب الکترکی وصل کنیم، تغییر شکل متناوبی در آن رخ می‌دهد و به ارتعاش در می‌آید.   سیر تحولی و رشد اثر پیزوالکترکی چنانچه گفته شد توانایی برخی مواد می‌باشد که برای تبدیل انرژی مکانیکی به انرژی الکتریکی و تبدیل انرژی مکانیکی به انرژی مکانیکی است، این اثر را برادران کوری ، پی‌یر و ژاک کوری ، در دهه 1880 کشف کردند. موادی که این پدیده را از خود بروز می‌دهند مواد پیزو الکترکی نامیده می‌شوند. اثر پیزوالکترکی در انواع بسیاری از مواد از جمله تک بلورها ، سرامیکها ، بسپارها و مواد مرکب دیده می‌شوند. فعالیت پیزوالکتریکی در اکسیدهای نسوز بس بلور در تیتانیوم باریوم (BT) کشف شد و در دهه 1950 اثرهای پیزوالکتریکی درمحلول جامد تیتانات زیرکونات سرب (PbT) کشف شد. اثر مستقیم و معکوس پیزو الکتریک وقتی ماده‌ای پیزو الکترکی تحت تأثیر مکانیکی (به صورت انبساط یا انقباض) قرار می‌گیرد، مقداری بار الکتریکیمیدان الکتریکی و پتانسیل متناظر با آن می‌انجامد. برعکس ، در پی اعمال میدانی الکتریکی ، با مقادیر گرانش مکانیکی روبرو می‌شویم. اثر اول به اثر سیستم و اثر دوم به اثر معکوس موسوم است. جهت گیری (قطعیت) و مقادیر بار و پتانسیل ایجاد شده اثر مستقیم ، به جهت و بزرگی نیروی اعمال شده نیست به بعضی جهتهای بلور شناختی ماده بستگی دارد. وقتی نیروی مکانیکی ناپدید می‌شود، بار تولید شده نیز از بین می‌رود و وقتی جهت کرنش وارونه شود قطبیت نیز وارونه می‌شود. بدین ترتیب در پاسخ به کرنش نوسان کننده با ولتاژی نوسانی روبرو می‌شویم که جهت و اندازه کرنشی ایجاد شده از طریق اثر معکوس نیز بستگی به جهت و اندازه میدان الکترکی اعمال شده دارد. شدت اثرهای مستقیم و معکوس در هر ماده‌ای با ثابت پیزوالکتریکی آن d مشخص می‌شود. نسخه دیگر شدت این اثر برای هر ماده ، ثابت جفت شدگی الکترومکانیکی k است. مربع این ثابت برابر است با کسری از انرژی مکانیکی که می‌تواند به انرژی الکتریکی تبدیل شود، یا نسبت انرژِی الکتریکی به انرژی مکانیکی. در سطح آن ظاهر می‌شود. این بار به تولید کاربرد اثر مستقیم پیزو الکتریک اثر مستقیم در وسایل راه اندازی و اثر غیر مستقیم در دریاچه‌ها مورد بهره برداری قرار می‌گیرد. به عنوان مثال ، از مواد پیزو الکتریک برای تولید و آشکارسازی امواج صوتی در هوا (در بلندگوها ، میکروفونها) یا در آب استفاده می‌شود. در سونارها ، ماهی یابها و عمق یابها از تأخیر زمانی بین تولید تپ صوتی در دریافت علامت باز تابیده آنرا برای اندازه گیری فاصله تا جسم ورود استفاده می‌کنند. این روش همچنین با استفاده از امواج فراصوتی با بسامدهای زیاد (بیشتر از 20KHz) در تصویرگیری پزشکی و بررسی غیر تخریبی مواد در تشخیص شکستگیهای و نقصهای داخلی نیز بکار می‌رود. کاربرد امواج فراصوتی در مواد پیزو الکتریک به علت تضعیف اندک امواج فراصوتی در بیشتر مواد جامدات و مایعات ، می‌توان از این امواج برای کاوش در اعماق بسیاری از مواد استفاده کرد. از امواج فراصوتی برابر تمییز کردن و صیقل دادن نیز بهره گیری می‌شود. از تشدید بلورهای پیزو الکتریک در حال ارتعاش ، برای کنترل دقیق بسامد در رادیوها و ساعتها هم استفاده می‌شود. امواج فراصوتی سطحی در مواد پیزوالکتریک را در پردازنده‌های سیگنال قیاسی ، مانند صافیهای نوار گذار و صافیهای تراکم تپ ، بکار می‌گیرند. مواد پیزو الکتریک ، همچنین در شتاب سنجها و وسایل استقرار دقیق مولدهای شب در فندکهای اجاق گاز مورد استفاده قرار می‌گیرند. ارتباط اثر پیزو الکتریک با ساختار مولکولی مواد اثر پیزو الکتریک با ساختار مواد ارتباط دارد. وقتی مرکز بارهای مثبت ماده اندکی از مرکز بارهای منفی فاصله بگیرد، یک دو قطبی حاصل می‌شود، این پدیده در موادی رخ می‌دهد که ساختار بلوری آنها نامتقارن است. در بعضی مواد با گشتاور دو قطبی دائمی روبرو می‌شویم که نتیجه‌ای از عدم تقارن ذاتی در ساختار بلوری است. ولی در مواد دیگر برای ایجاد گشتاور دو قطبی باید کرنشی مکانیکی پدید آورد. از سی و دو بلور ، بیست و یک عدد از آنها فاقد مرکز تقارنند. بیست عدد از آنها خاصیت پیزو الکتریسیته از خود بروز می‌دهند. ده تای دیگر برای نشان دادن گشتاور دو قطبی نیاز به کرنش مکانیکی دارند. وقتی فاصله بین بارهای مثبت و منفی بر اثر کرنش مکانیکی نغییر کند میدان الکتریکی ناشی از دو قطبی تغییر می‌کند و بار روی الکترود تغییر می‌کند. این فاصله را همچنین می‌توان با اعمال میدان الکتریکی تغییر داد که به پیدایش کرنشی مکانیکی منجر می‌شود. وابستگی مواد پیزوالکتریک به دما موادی که گشتاور دو قطبی دائمی دارند اثرات پیزو الکتریک (پیدایش بارا لکتریکی بر اثر گرمایش یکنواخت) و فرو الکتریک (تغییر جهت دو قطبی بر اثر میدان الکتریکی) نیز از خود بروز می‌دهند. چون گشتاور دو قطبی دائمی ممکن است حداقل دو جهت داشته باشد واکنشهای داخلی با ترکیب این جهت گیری متفاوت ممکن است به حداقل برسد. معمولا حوزه‌هایی (ناحیه‌هایی که در آنها تمام دو قطبیها در جهت خاصی سمتگیری می‌کنند) با جهت گیریهای دو قطبی متفاوت تشکیل خواهند شد. موادی که گشتاور دو قطبی دائمی دارند معمولا در دماهایی به ساختار تقارنی بالاتر که فاقد گشتاور دو قطبی دائمی است گذر می‌کنند. این دما را نقطه کوری می‌نامند، وقتی دما به طرف نقطه کوری افزایش می‌یابد، به شدت اثر پیزو الکتریک می‌یابد. وجود اثر پیزو الکتریک در تک بلور اثر پیزو الکتریک در انواع بسیاری از مواد ، از جمله تک بلورها ، سرامیکها ، بسپارها و مواد مرکب دیده می‌شود. کوارتز یکی از متداولترین مواد پیزو الکتریک تک بلور است و پایداری دمایی بسیار خوبی دارد. ثابت پیزو الکتریک آن d = 2.3X10-12 و ثابت جفت شدگی آن k = 0 , 1 است. سال 1958 ، شاهد ظهور فرآیندی صنعتی برای ساختن بلورهای کوارتز بود. در موادی که تک بلور هستند، گشتاورهای دو قطبی که به جهتهای بلوری وابسته‌اند جهات مشخصی دارند. در مواد بس ‌دانه‌ای (یا بیس بلور) ، محورهای بلور شناختی دانه‌های متفاوت بطور گسترده‌ای جهت دیگری شده است و دو قطبیها اثر یکدیگر را خنثی می‌کنند، مگر اینکه با اعمال میدانی الکتریکی برای همسو کردن دو قطبیها قطبیتی در ماده ایجاد شده باشد. عمل ایجاد قطبیت را همچنین می‌توان با اعمال میدان الکتریکی در دمایی بالاتر از نقطه کوری و سرد کردن مجدد و رساندن آن به نقطه کوری تا در جهت خاصی همسو شوند.
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۸
Shahram Ghasemi
قبلا با یک نمونه از مدارات رله راه پله آشنا شدید. در اینجا قصد دارم مدار دیگری را برای شما بررسی کنم. این مدار نیز از یک آی سی 555 برای اندازه گیری زمان استفاده کرده و از این جهت با مدار قبلی شباهت زیادی دارد. اما فرق این مدار با مدار قبلی نحوه نتظیم زمان است. در مدار قبلی از یک ولوم جهت تنظیم زمان استفاده کرده بود. اما این مدار بجای این کار از یک مدار دیجیتالی استفاده کرده که بصورت تاچ یا همان لمسی عمل میکند. و با هر بار تاچ شدن زمان بر روی مقدار جدید تنظیم میشود، و البته برای اینکه کاربر هم از مقدار تنظیم شده مطلع شود تعدادی LED نشانگر نیز بر روی آن قرار داده شده. که با هر بار تاچ شدن یکی از LED ها روشن میشود که نشان دهنده زمان جدید است.(تصویر 1) تصویر 1 همانطور که مشاهده میکنید این مدار بسیار جذاب تر از مدار قبلی است. اما نحوه تاچ کردن در این مدار چگونه پیاده سازی شده است؟ اگر به مدار دقت کنید با توجه به ترمینال خروجی آن که در تصویر پیداست میتوان حدس زد که مدار ابعاد کوچکی دارد، و طراح با استفاده از هنر و تکنیک طراحی توانسته این مدار را با کمترین قطعات طراحی کند. و برای شما دوستان هم حتما روش و چگونگی انجام اینکار جالب است. بخصوص که با ایده گرفتن ازاین مدار میتوانید طرحهای مشابه را نیز طراحی و پیاده سازی کنید. پس با ما همراه باشید تا به بررسی این مدار بپردازیم. در این مدار از یک صفحه فلزی برای لمس توسط کاربر استفاده شده است. این صفحه از طریق مقاومت R6 به بیس ترانزیستور Q3 متصل است. این ترانزیستور با ترانزیستور Q2 بصورت دارلینگتون بسته شده است. در نتیجه هر وقت شما صفحه فلزی را لمس میکنید بدلیل وجود مقداری ولتاژ خفیف در بدن این ولتاژ باعث تحریک بیس ترانزیستورها میشود و جریانی از سمت کلکتور خود به امیتر منتقل میکنند. این جریان با عبور از خازن C6 در آن بصورت ولتاژ ذخیره میشود و با رسیدن به حد معینی باعث تحریک ورودی کلاک شمارنده ده دهی 4017 میشود. در صورتیکه دست از روی صفحه برداشته شود. دیگرترانزیستورها تحریک نشده و وخازن نیز از طریق مقاومت موازی با آن (R7) تخلیه  میشود و لتاژ آن دوباره به صفر برمیگردد .(تصویر 2) تصویر 2  شمارنده 4017 با هر بار تحریک شدن کلاک آن یکی از ده خروجی خود را یک میکند و سایر خروجی ها در سطح صفر باقی می مانند. زمانیکه خروجی اول فعال میشود ، دیود D8 روشن میشود و باعث روشن شدن LED اول (D18 ) میشود. البته مقاومت R8 مانع از عبور جریان زیاد دیود فوق میشود. از طرفی ولتاژ خروجی از 4017 از طریق مقاومت 180 کیلواهمی R3 باعث شارژ شدن خازن C4 میگردد. در صورتیکه ولتاژ به حد آستانه تحریک پایه 6 آی سی 555 برسد باعث صفر شدن خروجی آی سی پایه 3 میشود و پایه 7 آی سی نیز صفر میشود و خازن را دشارژ کرده و ولتاژ دوسر آن را صفر نگاه میدارد. به عبارت دیگر هنوز رله فعال نشده و فقط شما زمان را بر روی حالت اول که 1 دقیقه است انتخاب کردید. حال اگر کسی یکی از کلیدهای راه پله را بزند ولتاژ برق شهر از طریق پایه مشترک رله و تیغه بسته آن به ورودی بیس Q1 از طریق مقاومت R5 و دیود D5 میرسد.و با توجه تقسیم ولتاژی که بین مقاومت R5 و مقاومت R4 انجام میشود 55 هزارم آن به بیس ترانزیستور خواهد رسید. مثلا اگر ولتاژ برق را 220 ولت در نظر بگیریم ، ولتاژی در حدود 1.2 ولت به ترانزیستور خواهد رسید و این ولتاژ برای روشن کردن آن کفایت میکند. و درنتیجه ولتاژ کلکتور آن به حدود صفر رسید و چون کلکتور به پایه 2 آی سی متصل است، این پایه تحریک شده و خروجی آی سی فعال میشود و رله روشن میشود. با روشن شدن رله تیغه بسته آن باز میشود عملا دیگر ترانزیستور Q1 از حالت تحریک خارج میشود. از طرف دیگر تیغه باز رله نیز بسته میشود و فاز را به ترمینال مشترک COM منتقل میکند، در نتیجه لامپ ها از طریق رله روشن باقی می مانند. از طرف دیگر پایه 7 آی سی قطع شده و خازن آزاد میشود و شروع به شارژ شدن به ترتیبی که در بالا به آن اشاره شد میکند. و پس از طی زمان معین با رسیدن ولتاژ آن به آستانه تحریک آی سی 555 ، باعث قطع رله و بازگشت مدار به حالت اول میشود(لامپ های روشنایی نیز خاموش میشوند) و پایه 7 مجددا صفر شده و خازن را دشارژ کرده و آنرا در سطح صفر نگه میدارد. اما در صورتیکه خروجی دوم آی سی 4017 نیز فعال باشد به دلیل اینکه آند دیود D9 به آند D8 متصل است، دیود D9 روشن شده و D8 خاموش میشود و تاثیری در عملکرد مدار نخواهد داشت، دلیل اینکار از سوی طراح این بوده که در این مدار 7 حالت مختلف در نطر گرفته شده که 6 تای آن برای زمانهای مختلف و آخری برای حالت دائم روشن است. و از طرفی آی سی 4017 ده خروجی دارد که طراح سه خروجی اضافه را بعنوان حالت مشترک در نظر گرفته است. در صورتیکه خروجی سوم فعال شود LED دوم D19 روشن میشود که نشان دهنده زمان دو دقیقه است. در این حالت خازن C4 از طریق دو مقاومت 180 کیلو اهمی R9 و R3 شارژ میشود و در نتیجه زمان شارژ آن دو برابر حالت اول میشود. یعنی زمان از 1 دقیقه به 2 دقیقه میرسد. با فعال شدن یکی از خروجی های چهارم تا ششم،LED سوم به نشانه زمان 5 دقیقه روشن میشود و خازن C4 از طریق سه مقاومت R10 و R9 و R3 شارژ میشود که مجموع این مقاومتها 470+180+180برابر 830 کیلو اهم میشود که حدود 5 برابر حالت اول خواهد بود. با فعال شدن خروجی هفتم، LED چهارم به نشانه 10 دقیقه روشن میشود. که مجموع مقاومتهای R11 و R10 و R9 و R3 قرار گرفته در مسیر شارژ C4 زمانی در حدود 10 دقیقه تاخیر را ایجاد خواهد کرد. با فعال شدن خروجی های هشتم و نهم نیز این مسئله تکرار میشود. اما با فعال شدن خروجی دهم فقط LED هفتم روشن میشود و هیچ جریانی به سوی خازن C4 برای شارژ کردن آن ارسال نمیشود. در نتیجه خازن شارژ نشده و خروجی تایمر قطع نشده و لامپهای روشنایی بصورت دائم روشن خواهند بود. در ساخت مدار دقت کنید که بدلیل ترسیم این مدار در نرم افزار پروتیوس خطوط تغذیه این آی سی ترسیم نشده که شما باید پایه 16 را مثبت تغذیه و پایه 8 را به منفی مدار متصل کنید. جهت دانلود نقشه در ابعاد بزرگتر کلیک کنید. به نظر من این مدار بسیار طراحی زیبا و شیرینی داشته و نشان دهنده هوش و تجربه بالای طراح آن است. اما نکاتی که در بالا بررسی نشد:  توجه داشته باشید که شاید این شبهه برای شما بوجود آید که چرا وقتی یک LED مربوط به خروجی فعال 4017 روشن میشود LED های بالاتر و یا پایین تر روشن نمیشوند؟ دلیل آن این است که در این مدار هر LED که روشن شود، LED های پایین آن بدلیل اینکه آندشان به خروجی آی سی ها وصل است(دیودهای بین آی سی و LED روشن هستند) و این خروجی ها چون صفر هستند باعث خاموش شدن LED میگردند. اما LED های بالاتر با اینکه آندشان به دیود های سر راه خروجی آی سی وصل است، اما چون آند آن دیود به صفر بوده و از طرفی کاتدشان از طریق مقاومت طبقه پایین به ولتاژ متصل است عملا بدلیل در بایاس معکوس بودن خاموش هستند. حالا  دقت کنید تمام کاتد LED ها بهم وصل است و طبق قانون دیودها هر دیودی که که آندش به ولتاژ بالاتری وصل باشد، روشن میشود و ما بقی خاموش خواهند بود. در نتیجه فقط LED که مستقیما به خروجی فعال آی سی وصل است روشن خواهد بود. خازن C7 که بصورت موازی با تیغه باز رله قرار گرفته خازن جرقه گیر است و از ایجاد جرقه در هنگام قطع و صل این تیغه رله جلوگیری میکند. که باعث افزایش عمر مفید کنتاکت های رله خواهد شد. خازن C5 فقط در لحظه اولی که مدار به برق متصل میشود ویا در زمانهای که برق قطع و وصل میشود کاربرد دارد. به این صورت که هنگامیکه برق برای اولین بار وارد مدار میشود این خازن دشارژ بود و باعث میشود که بصورت اتصال کوتاه عمل کرده و لتاژ پایه 2 آی سی 555 را بالا نگاه میدارد و این آی سی تحریک نشده و خروجی را فعال نمیکند و لامپها بی جهت روشن نمیشوند. البته بعد از چند لحظه این خازن شارژ میشود و پایه شماره 2 به حالت عادی برگشته و مدار میتواند کار خود را انجام دهد. مقاومت R14  جریان مدار را بصورت دائم مصرف میکند و شاید در نگاه اول کاربردی برای آن به نظر نرسد. اما در واقع این مقاومت دو کار انجام میدهد. یکی در زمان وجود برق و دومی در زمان قطع برق! هنگامیکه برق در مدار وجود دارد این مقاومت با مصرف ان مانع از افزایش ولتاژ مدار و صدمه دیدن قطعات میشود. دقت کنید که در این مدار ما رگولاتور ولتاژ نداریم و فقط یک خازن در ورودی مدار باعث کاهش ولتاژ برق شهر میشود و در صورت عدم مصرف جریان در مدار قاعدتا ولتاژ تا حد برق شهر افزایش پیدا میکند. البته در سایر مدارات مثل مدار تایمر راه پله قبلی این مقاومت با یک LED نیز سری شده بود که نشان دهنده وجود تغذیه در مدار باشد. اما کار دوم این مقاومت در زمان قطع برق این است که ولتاژ ذخیره شده در خازن C5 را که در بالا به آن اشاره شد را تخلیه کند تا این خازن با وصل مجدد برق بتواند وظیفه خود را انجام دهد.
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۸
Shahram Ghasemi
قطعات مورد نیاز : 8عدد ای سی 4543 6 عدد سون سگمنت آند مشترک 1میکرو 8051 8 عدد مقاومت 10K بورد سوراخ دار در این پروژه ما قصد داریم یک مدار ساعت دیجیتالی با دقت بالا و دکمه های تنظیم دقیقه و ساعت ببندیم. در نمونه شبیه سازی شده ما می توانیم از سون سگمنت های BCD(ورودی BCD ) استفاده کنیم اما در محیط واقعی چنین 7SEGMENT هایی در بازار وجود ندارد. به همین دلیل ما از ای سی 4543 برای تبدیل کد ارسالی از میکرو (BCD ) به کد قابل فهم برای سون سگمنت استفاده می کنیم . این ای سی از 16 پایه تشکیل شده است. از پایه 2 تا 5 برای ورودی و از پایه 9 تا 15 برای خروجی استفاده شده است. همانطور که در شکل بالا مشاهده می کنید این مدار با ای سی 4543 بسته شده است البته هدف از این کار صرفه جویی در مصرف بیت پورت های خروجی می باشد اما می توان از 7SEG های 2 تایی یا 4 تایی و یا 6 تایی هم استفاده کرد که البته به دلیل زیاد شدن خطوط برنامه و سخت تر شدن ان باعث خطاهای میلی ثانیه ای می شود که در استفاده دراز مدت از ساعت می توان مشاهده کرد . در این مدار ما از پورت صفر برای ثانیه و از پورت دو برای دقیقه و از پورت سه برای ساعت استفاده کردیم و با دو عدد دکمه (BUTTON ) ساعت (P1.0) و دقیقه (P1.1) را تنظیم می کنیم . و برای کسانی که تاکنون بصورت سخت افزاری با میکرو 80C51 کار نکرده اند قابل ذکر است که برای راه اندازی میکرو پایه شماره 31 باید به VCC وصل شود و پایه 18 و 19 باید به یک کریستال 12 مگاهرتز وصل شوند که هر پایه باید به یک خازن 30 پیکو فاراد وصل شود و سر دیگر خازن هم به زمین متصل می گردد. و همچنین برای استفاده از پورت صفر باید تک تک بیت ها به مقاومت10KΩ وصل شوند.   ORG 0000H MOV P0,#00H MOV P1,#0FFH MOV P1,#00H MOV P2,#00H MOV P3,#00H MOV R0,#00H MOV R1,#00H MOV R2,#00H MOV R3,#00H MOV R4,#00H MOV R5,#00H MOV R6,#00H MOV R7,#00H AAA: MOV R7,#60D MOV A,#00HALI: MOV P0,A CALL DELAY JB P1.0,DAGH JB P1.1,DAGH1 JB P1.2,SAAT JB P1.3,SAAT1 INC A CJNE A,#0AH,DDD DA ADDD: CJNE A,#1AH,EEE DA AEEE: CJNE A,#2AH,FFF DA AFFF: CJNE A,#3AH,GGG DA AGGG: CJNE A,#4AH,HHH DA A HHH: DJNZ R7,ALIDAGH: INC R6 MOV A,R6 CJNE A,#0AH,III DA AIII: CJNE A,#1AH,JJJ DA AJJJ: CJNE A,#2AH,KKK DA AKKK: CJNE A,#3AH,LLL DA ALLL: CJNE A,#4AH,MMM DA AMMM: CJNE A,#5AH,NNN DA ANNN: MOV R6,A MOV P2,R6 CJNE A,#60H,AAA MOV R6,#00H MOV P2,R6SAAT: INC R5 MOV A,R5 CJNE A,#0AH,OOO DA AOOO: CJNE A,#1AH,PPP DA APPP: MOV R5,A MOV P3,R5 CJNE R5,#24H,AAA MOV R5,#00H MOV P3,R5 JMP AAASAAT1: DEC R5 MOV A,R5 CJNE A,#1FH,OOOO MOV A,#19HOOOO: CJNE A,#0FH,PPPP MOV A,#09HPPPP: CJNE A,#0FFH,SSSS MOV A,#24HSSSS: JMP PPPDAGH1: DEC R6 MOV A,R6 CJNE A,#5FH,IIII MOV A,#59HIIII: CJNE A,#4FH,JJJJ MOV A,#49HJJJJ: CJNE A,#3FH,KKKK MOV A,#39HKKKK: CJNE A,#2FH,LLLL MOV A,#29HLLLL: CJNE A,#1FH,MMMM MOV A,#19HMMMM: CJNE A,#0FH,NNNN MOV A,#09HNNNN: CJNE A,#0FFH,QQQQ MOV A,#59HQQQQ: JMP NNNDELAY: MOV R4,#4DLEEP3: MOV R3,#199DLEEP2: MOV R2,#250DLEEP1: NOP NOP DJNZ R2,LEEP1 DJNZ R3,LEEP2 DJNZ R4,LEEP3 RET END جهت دانلود نقشه و سورس برنامه به همراه توضیحات به اینجا بروید!
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۸
Shahram Ghasemi
محققان الکترونیکی ساخته اند که می تواند خم شود، می تواند کش بیاید. و هم اکنون، آن ها به هدف نهایی رسیده اند- الکترونیکی که می تواند به هر دگرشکل پیچیده ای چون پیچش دربیاید. یونگانگ هوآنگ، جوزف کومینگز، استاد مهندسی عمران و محیط و مهندسی مکانیک از دانشگاه نورث وسترن، وجان روجرز، استاد علوم مواد و مهندسی دانشگاه ایلی نویز، فن آوری خود را با نام "پاپ آپ" توسعه داده اند که مداراتی با قابلیت پیچش و تاب خوردگی ایجاد می نماید. این نوع الکترونیک می تواند در جاهایی که الکترونیک صاف و بدون خمش با مشکل روبرو می شود، مانند بدن انسان، مورد استفاده قرار گیرد.تحقیق آن ها به صورت آنلاین توسط Proceeding of the National Academy of Sciences (PNAS) منتشر شد.اجزاء الکترونیکی به لحاظ تاریخی صاف و غیرقابل خمش بوده اند چرا که سیلیکون، جزء اصلی تمام الکترونیک، شکننده و غیرقابل انعطاف است. هر نوع خمش یا کشش قابل ملاحظه موجب خرابی دستگاه الکترونیکی می شود.هوآنگ و روجرز روشی را برای ساخت الکترونیک قابل کشش توسعه دادند که محدوده ی کشش را افزایش می دهد (به اندازه ی 140 درصد) و این امکان را به کاربر می دهد تا مدارات را به حد چرخش برساند. این فن آوری تحول ساز، نوید بخش حسگرها، فرستنده-گیرنده های قابل انعطاف جدید، دستگاه های فوتوولتائیک و میکروسیال جدید، و دیگر کاربردهای پزشکی و ورزشی می باشد.این همکاری - که هوآنگ روی نظریه و روجرز روی آزمایشات تمرکز می کند - در چند سال گذشته مفید بوده است. این زوج در سال 2005، یک شکل تک بعدی، قابل کشش از سیلیکون تک کریستالی را توسعه دادند که می تواند در یک جهت بدون تغییر ویژگی های الکتریکی اش کشیده شود؛ این نتایج توسط مجله ی ساینس در 2006 منتشر شد. اوایل امسال، آن ها مدارات مجتمع قابل کششی را ساختند که این کار نیز در ساینس منتشر شد.سپس این محققان، نوع جدیدی از فن آوری را توسعه دادند که این امکان را به مدارات داد تا روی یک صفحه ی دارای انحنا قرار بگیرند. این فن آوری، آرایه ای از عناصر مداری تقریبا صد میکرومتر مربعی را به کار برد که توسط "پل های پاپ آپ" فلزی متصل می شدند. این عناصر مداری آن قدر کوچک بودند که هنگام قرار گرفتن روی یک سطح انحنادار، خم نمی شدند - مشابه چگونگی خم شدن ساختمان ها روی کره ی زمین انحنادار. این سیستم به این علت کار می کرد که این عناصر به وسیله ی سیم هایی فلزی متصل می شدند که هنگام خمش یا کشش می جهیدند. این تحقیق به عنوان مقاله ای در مجله ی نیچر در اوایل آگوست جای گرفت.در تحقیق گزارش شده در PNAS، هوآنگ و روجرز پل های پاپ آپ خود را گرفته و آن ها را به شکل "S" ساختند که علاوه بر خمش و کشش امکان پیچش را نیز دارد.هوآنگ گفت: "برای بسیاری از کاربردهای مرتبط با بدن انسان - مانند قرار دادن یک حسگر روی بدن - یک دستگاه الکترونیکی نه تنها نیاز به خمش و کشش دارد بلکه به پیچش نیز نیاز دارد. بنابراین ما فن آوری پاپ آپ خود را برای رسیدن به این موضوع توسعه دادیم."هوآنگ و روجرز در حال حاضر بر روی کاربرد مهم دیگری از این فن آوری تمرکز کرده اند: صفحات خورشیدی. این زوج، در ماه اخیر مقاله ای را در مجله ی نیچر متریالز در مورد توصیف فرایند جدیدی برای ایجاد سلول های خورشیدی سیلیکونی بسیار نازک منتشر کردند که می توانند در آرایه های قابل انعطاف و شفاف ترکیب شوند.
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۸
Shahram Ghasemi
دیود های زنر یا شکست ، دیود های نیمه هادی با پیوند p-n هستند که در ناحیه بایاس معکوس کار کرده و دارای کاربردهای زیادی در الکترونیک ، مخصوصآ به عنوان ولتاژ مبنا و یا تثبیت کننده ی ولتاژ دارند. هنگامیکه پتانسیل الکتریکی دو سر دیود را در جهت معکوس افزایش دهیم در ولتاژ خاصی پدیده شکست اتفاق می افتد، بد ین معنی که با افزایش بیشتر ولتاژ ، جریان بطور سریع و ناگهانی افزایش خواهد داشت. دیود های زنر یا شکست دیود هایی هستند که در این ناحیه یعنی ناحیه شکست کار میکنند و ظرفیت حرارتی آنها طوری است که قادر به تحمل محدود جریانمعینی در حالت شکست می باشند، برای توجیه فیزیکی پدیده شکست دو نوع مکانیسم وجود دارد. مکانیسم اول در ولتاژهای کمتر از 6 ولت برای دیودهایی که غلظت حامل ها در آن زیاد است اتفاق می افتد و به پدیده شکست زنر مشهور است. در این نوع دیود ها به علت زیاد بودن غلظت ناخالصی ها در دو قسمت p و n ، عرض منطقه ی بار فضای پیوند باریک بوده و در نتیجه با قرار دادن یک اختلاف پتانسیل v بر روی دیود (پتانسیل معکوس) ، میدان الکتریکی زیادی در منطقه ی پیوند ایجاد می شود. با افزایش پتانسیل v به حدی می رسیمکه نیروی حاصل از میدان الکتریکی ، یکی از پیوند های کووالانسی را می شکند. با افزایش بیشتر پتانسیل دو سر دیود از انجایی که انرژی یا نیروهای پیوند کووالانسی باند ظرفیت در کریستال نیمه هادی تقریبأ مساوی صفر است ، پتانسیل تغییر چندانی نکرده ، بلکه تعداد بیشتری از پیوندهای ظرفیتی شکسته شده و جریان دیود افزایش می یابد. آزمایش نشان میدهد که ضریب حرارتی ولتاژ شکست برای این نوع دیود منفی است ، یعنی با افزایش درجه حرارت ولتاژ شکست کاهش می یا بد. بنابر این دیود با ولتاژ کمتری به حالت شکست می رود (انرژی باند غدغن برای سیلیکن و ژرمانیم در درجه حرارت صفر مطلق بترتیب 1.21 و0.785 الکترون_ولت است، و در درجه حرارت 300 درجه کلوین این انرژی برای سیلیکن ev 1.1و برای ژرمانیم ev0.72 خواهد بود). ثابت می شود که می دان الکتریکی لازم برای ایجاد پدیده زنر در حدود 2*10است. این مقدار برای دیود هایی که در آنها غلظت حامل ها خیلی زیاد است در ولتاژهای کمتر از 6 ولت ایجاد می شود . برای دیودهایی که دارای غلظت حاملهای کمتری هستند ولتاژ شکست زنر بالاتر بوده و پدیده ی دیگری بنام شکست بهمنی در آنها اتفاق می افتد (قبل از شکست زنر) که ذیلأ به بررسی آن می پردازیم. مکانیسم دیگری که برای پدیده شکست ذکر می شود ، مکانیسم شکست بهمنی است. این مکانیسم در مورد دیودهایی که ولتاژ شکست آنها بیشتر از 6 ولت است صادق می باشد . در این دیود ها به علت کم بودن غلظت ناخالصی ، عرض منطقه ی بار فضا زیاد بوده و میدان الکتریکی کافی برای شکستن پیوندهای کووالانسی بوجود نمی آید ، بلکه حاملهای اقلیتی که بواسطه انرژی حرارتی آزاد می شود ، در اثر میدان الکتریکی شتاب گرفته و انرژی جنبشی کافی بدست آورده و در بار فضا با یون های کریستال برخورد کرده و در نتیجه پیوندهای کووالانسی را می شکنند . با شکستن هر پیوند حاملهای ایجاد شده که خود باعث شکستن پیوند های بیشتر می شوند . بدین ترتیب پیوندها بطور تصاعدی یا زنجیری و یا بصورت پدیده ی بهمنی شکسته می شوند و این باعث می شود که ولتاژ دو سر دیود تقریبأ ثابت مانده و جریان آن افزایش یافته و بواسطه ی مدار خارجی محدود می شود . چنین دیود هایی دارای ضریب درجه ی حرارتی مثبت هستند . زیرا با افزایش درجه ی حرارت اتمهای متشکله کریستال به ارتعاش در آورده ، در نتیجه احتمال برخورد حاملهای اقلیت با یونها ، بهنگام عبور از منطقه بار فضا زیادتر می گردد . به علت زیاد شدن برخوردها احتمال اینکه انرژی جنبشی حفره یا الکترون بین دو برخورد متوالی بمقدار لازم برای شکست پیوند برسد کمتر شده و در نتیجه ولتاژ شکست افزایش می یابد.
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۸
Shahram Ghasemi
بحثی که همیشه در الکترونیک صنعتی مطرح بوده و هست تبدیل یک ولتاژ dc به یک ولتاژ ac است. به سیستمی که این تبدیل را برای ما انجام می دهد اینورتر گفته می‌شود. اینورترها دارای رنج وسیعی از کاربردهای مختلف هستند که تعدادی از انها را ذکر می کنیم: 1- یک خط ولتاژ AC: خیلی از مواقع دسترسی به یک منبع dc مثل باتری وجود دارد. ولی یک خط ولتاژ AC مورد نیاز است مثل اتومبیل 2- منابع تغذیه بدون وقفه (UPS): در انواع مختلف UPS ها جهت تبدیل توان باتری ها به یک توان AC به اینورترها نیاز داریم. 3- کوره های القایی:اینورترها جهت تبدیل یک توان AC با فرکانس پائین به یک توان AC با فرکانس بالا مورد استفاده قرار می گیرند. این ولتاژ فرکانس بالا در کوره های القایی مورد استفاده دارد. به این ترتیب که ابتدا توان AC را به DC یکسو کرده و سپس توسط اینورتر به توان AC فرکانس بالا تبدیل می‌کنند. 4-در سیستم انتقال توان HVDC: در این سیستم انتقال توان الکتریکی ، ابتدا توان AC به DC تبدیل می‌شود. این توان DC با ولتاژ بسیار بالا به وسیله خطوط انتقال به مقصد می رسد. در محل گیرنده، این توان DC دوباره به مقدار AC تبدیل می‌شود 5-درایورهای فرکانس متغیر: یک درایو فرکانس متغیر، سرعت عملکرد یک موتور AC را به کمک کنترل کردن ولتاژو فرکانس به صورت همزمان تنظیم می‌کند. 6- استفاده در پنلهای خورشیدی: پنلهای خورشیدی دارای خروجی DC هستند که با استفاده از اینورترها این توان تبدیل به AC می‌شود.انواع اینورترها از نظر فاز و شکل موج خروجی: اینورترها از نظر فاز تبدیل به دو نوع عمده تک فاز و سه فاز تقسیم بندی می‌شوند همچنین از نظرشکل موج خروجیشان به چهار نوع زیر تقسیم می‌شوند.1- خروجی به شکل موج مربعی 2- خروجی به شکل سینوسی اصلاح شده (معمولی)3- خروجی به شکل سینوسی اصلاح شده (پله ای) 4- خروجی به شکل سینوسی خالص
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۳:۵۱
Shahram Ghasemi
کارت هوشمند کارتی پلاستیکی با ابعاد کارت‌های اعتباری (حدود 5/5 در 5/8 سانتی‌متر) است که بر روی آن یا در بین لایه‌های آن، تراشه‌های حافظه و ریز‌پردازنده برای ذخیره‌سازی داده‌ها و پردازش آنها قرارداده شده است. یک کارت هوشمند کامپیوتر کوچکی است که بر روی یک کارت پلاستیکی نصب شده است. این قبیل کارت‌ها به راحتی درجیب جای می‌گیرند و درکاربرد‌های مختلف مورد استفاده قرار می‌گیرند. تاریخچة کارت هوشمند اختراع کارت هوشمند را برای اولین بار فردی فرانسوی با نام رولاند مورنو در سال 1974 به ثبت رساند. از آن زمان به بعد،‌ شرکت‌هایی نظیر Bull‌،‌ Honeywell، Motorola دراین زمینه به فعالیت پرداختند و در نتیجة فعالیت‌های آنها، در سال 1979 اولین کارت هوشمند ریز‌پردازنده‌ای ساخته شد. اولین استاندارد برای کارت هوشمند در سال 1986 و با عنوان ISO 789116/1 مطرح شد. استفاده از کارت هوشمند در سطح ملی برای نخستین بار در فرانسه و در سال 1986 انجام گرفت. دراین سال، شرکت مخابرات فرانسه برای اولین بار، به جای سکه در تلفن‌های عمومی از کارت هوشمند استفاده کرد که این اقدام سبب رفع بسیاری از مشکلات استفاده از تلفن‌های عمومی،‌سوء‌استفاده‌ها و خرابکاری‌ها شد. پس از آن، از اوایل دهة 90 میلادی، استفاده از کارت‌های هوشمند درکشور‌های مختلف رواج پیدا کرد و به تدریج کاربرد‌های جدیدی برای آن پیدا شد. دسته‌بندی کارت‌های هوشمند کارت‌های هوشمند را بر حسب موارد مختلفی دسته‌بندی‌ می‌کنند؛ در ادامه به دو مورد آن می‌پردازیم: دسته‌بندی بر اساس نحوه ارتباط با کارت‌خوان بر اساس این دسته‌بندی، کارت‌های هوشمند به سه گروه تقسیم می‌شوند: 1- کارت هوشمند تماسی برای استفاده از این قبیل کارت‌ها، باید اتصال فیزیکی بین کارت و دستگاه کارت‌خوان برقرار گردد. داده‌های موجود برروی کارت به صورت سریال به کارت‌خوان ارسال می‌شود و پس از پردازش، اطلاعات جدید از طریق همان پورت به روی کارت منتقل می‌شود. به عنوان نمونه، کارت‌های تلفن‌ عمومی جزو این دسته محسوب می‌شوند. مشکل اصلی این قبیل کارت‌ها،‌ خراب شدن کنتاکت‌های فلزی (محل‌های تماس) بر اثر عوامل خارجی نظیر ضربه و شرایط فیزیکی محیط است. درشکل 2 قسمت‌های موجود در کنتاکت‌های فلزی این نوع کارت به تصویر کشیده شده است. 2- کارت هوشمند غیرتماسی در این نوع کارت ‌هوشمند، ارتباط بین کارت و کارت‌خوان به‌صورت فیزیکی بر قرار نمی‌شود؛ بلکه از طریق میدان‌های الکترومغناطیسی و یا امواج RF صورت می‌گیرد. برای برقرای ارتباط،‌ آنتن مخصوصی بین تراشه‌های کارت قرار داده شده است که در فاصله‌های کم، تا حدود 50 سانتیمتر، می‌تواند ارتباط ایجاد کند. کاربرد اصلی این قبیل کارت‌ها در مواردی است که عملیات مورد نظر باید سریع انجام گیرد، به عنوان نمونه می‌توان به کارت‌های مترو اشاره کرد. مزیت اصلی این قبیل کارت‌ها علاوه بر سهولت استفاده، عمر طولانی‌تر و ضریب ایمنی بالاتر آن است؛ زیرا در این نوع کارت، تراشه به همراه آنتن در میان لایه‌های تشکیل‌دهندة کارت قرار می‌گیرد. 3- کارت هوشمند ترکیبی این نوع کارت ترکیبی از کارت‌های هوشمند تماسی و غیرتماسی است که با هر دو نوع دستگاه‌های کارت‌خوان سازگار است. از این نوع کارت‌ها برای ساخت کارت‌های چندمنظوره استفاده می شود. دسته‌بندی بر اساس نوع تراشه به‌کاررفته در کارت 1- کارت با حافظه این نوع کارت شامل واحد‌های حافظه است که توسط یک سیستم امنیتی سخت‌افزاری محافظت می‌شود. در واحد حافظة ROM اطلاعات غیرقابل‌تغییر، نظیر شمارة کارت و شمارة دارنده کارت ذخیره می‌شود. از واحد حافظة EEPROM نیز برای نگهداری اطلاعاتی در طول زمان یا بر اساس نیاز کاربر تغییر می‌کنند، استفاده می‌شود، به عنوان مثال اطلاعات مربوط به اعتبار باقیمانده درکارت. از جمله کاربرد‌های این نوع کارت‌ها می‌توان به کارت تلفن همگانی، سیستم کنترل و شناسایی و مواردی از این قبیل اشاره کرد. 2- کارت هوشمند میکرپروسسوری این نوع کارت‌ها دارای CPU هستند و قدرت پردازش اطلاعات و انجام محاسبات را دارند. قیمت این کارت‌ها از کارت‌های نوع قبل بیشتر است و کاربرد آنها برای ساخت کارت‌های مالی،‌کارت‌های شناسایی و نظایر آن است. در ادامه به نقش هریک از واحد‌های حافظه در این نوع کارت اشاره شده است: ROM: نگهداری سیستم‌عامل کارت هوشمند RAM: نگهداری موقت داده‌ها EEPROM: نگهداری برنامة کاربردی و داده‌های مرتبط با آن واحد واسطة (Interface) این کارت ممکن است به یکی از صورت‌های تماسی، غیرتماسی و یا ترکیبی باشد که وظیفة برقراری ارتباط با محیط خارج از کارت را برعهده دارد. در شکل 6 نحوة ارتباط یک واحد واسطة تماسی با CPU و واحد‌های حافظه نمایش داده شده است: کاربرد‌های کارت هوشمند امروزه در بسیاری ازکشور‌ها، از کارت‌های هوشمند در کاربرد‌های مختلفی استفاده می‌شود، این کاربردها به طور کلی به سه دسته طبقه‌بندی می‌شوند: 1-    کابرد‌های شناسایی: از این کارت‌ها برای شناسایی هویت افراد و صاحبان آنها استفاده می‌شود؛ مثل کارت تردد، کارت پارکینگ. 2-    کابرد‌های مالی 2-1- کارت‌های پیش‌پرداخته: این کارت‌ها را کاربر می‌خرد و با ارایة آن به دستگاه کارت‌خوان، به جای پرداخت پول، هزینه موردنظر از موجودی کارت کسر می‌شود. مانند کارت تلفن همگانی. 2-2- کارت‌های بانکی: این کارت‌ها را بانک‌ها به مشتریان خود عرضه می‌کنند که معرف هویت الکترونیکی مشتری نزد بانک صادرکننده است. با ارایه این کارت‌ها به دستگاه‌های خودپرداز، مشتری می‌تواند از خدمات بانک بهره‌مند شود. 3-    کاربرد‌های نگهداری اطلاعات: دراین قبیل کارت‌ها، کد شناسایی و اندکی از اطلاعات شخصی فرد درج شده است که با ارایة به دستگاه کارت‌خوان، از این اطلاعات استفاده می‌شود. کارت‌هایی نظیر کارت گواهینامة هوشمند، کارت‌‌های درمان،‌ کارت‌های شناسنامه، کارت دانشجویی از این نوع محسوب می‌شود. مزایای کارت هوشمند 1-    اندازه: اندازه این قبیل کارت‌ کوچک است و نیاز به حمل مدارک و پول را برطرف می‌سازد. 2-    امنیت: به دلیل وجود سیستم‌های حفاظتی روی کارت نظیر رمزنگاری، از داده‌های موجود بر روی آن به خوبی محافظت می‌شود. 3-    حجم اطلاعات قابل‌حمل:کارت‌های هوشمند قادرند حجم زیادتری از اطلاعات را در مقایسه با کارت‌های مغناطیسی درخود ذخیره کنند. اقدامات لازم برای استفاده از کارت‌های هوشمند 1-    فرهنگ‌سازی برای مردم و آموزش شیوه‌ی درست استفاده از کارت؛ 2-    قرار دادن دستگاه‌های کارت‌خوان در مراکز خرید و فروش؛ 3-    افزایش ضریب ایمنی و ایجاد اطمینان خاطر از امنیت داده‌‌های کارت. کارت هوشمند چندمنظوره چیست؟ توسعه و گسترش کاربرد‌ کارت‌های هوشمند از جمله الزامات استقرار و تحقق برنامه‌های دولت الکترونیک محسوب می‌شود. بنابراین‌، در دولت الکترونیک هر فرد نیاز به چندین کارت از انواع ذکرشده دارد. اما تعدد کارت‌ها مشکلاتی به همراه دارد؛ از قبیل: ·        صرف هزینة جداگانه برای هرکارت؛ ·        زحمت بیشتر درحمل کارت‌های متعدد و درنتیجه کاهش استقبال از آنها؛ ·        بالا رفتن مراجعات اداری برای دریافت کارت. برای حل این مشکل، طرح تجمیع کارت‌های هوشمند راهکار مناسبی است که علاوه بر افزایش ضریب ایمنی، سبب می‌شود تعداد کارت‌های مورد نیاز هرفرد کاهش یابد. تجربة کشور مالزی پروژة کارت هوشمند چندمنظوره دولتی مالزی، از جمله فعالیت‌هایی است که در چارچوب برنامه MSC‌ این کشور اجرا شده است. این پروژه در سال 1999 آغاز شد و هدف اصلی آن ارائة یک کارت هوشمند چند‌منظوره برای کاربرد‌های بخش دولتی و خصوصی بود. دولت مالزی از اواخر سال 2001، توزیع این کارت جدید را آغاز کرده است و به تدریج تمامی شهروندان بالای 12 سال در این کشور، دارای یک کارت هوشمند چند‌منظوره دولتی با نام MyKad خواهند بود. دولت مالزی برای اجرای این پروژه با دو چالش اساسی مواجه بود: مشکلات فنی و مسأله فرهنگ‌سازی و آمادگی مردم برای پذیرش این نوع کارت جدید. برای غلبه بر اولین چالش، اجرای این پروژه به کنسرسیومی بین‌المللی از شرکت‌های معتبر در این زمینه سپرده شد و دستگاه‌های دولتی مرتبط نیز موظف به همکاری با این کنسرسیوم شدند. در زمینة فرهنگ سازی نیز دولت مالزی برنامه‌های آموزشی متعددی را در مورد مزایای کارت هوشمند چندمنظوره تهیه کرد و از طریق رسانه‌های جمعی به آموزش مردم پرداخت. در مالزی، کارت MyKad به عنوان یک کارت هوشمند چندمنظوره درکاربرد‌های زیر استفاده می‌شود: ·        به عنوان کارت شناسایی ملی و گواهینامه رانندگی؛ ·        برای نگهداری اطلاعات گذرنامه (بدون اینکه جایگزین گذرنامه شود)؛ ·        نگهداری اطلاعات و سوابق پزشکی افراد؛ ·        پرداخت عوارض بزرگراه‌ها، هزینة سیستم‌های حمل و نقل عمومی و غیره؛ ·        انجام تعاملات بانکی (استفاده از دستگاه‌های خودپرداز یا ATM)؛ ·        پرداخت هزینه خرید‌ها جمع‌بندی از جمله الزامات تحقق دولت الکترونیک، تهیه و توزیع کارت‌های هوشمند برای کاربرد‌های مختلف است که با توجه به تعدد این کاربرد‌ها هر فرد ناگزیر باید کارت‌های زیادی‌ را به همراه داشته باشد؛ این مسأله می‌تواند مشکلاتی برای مردم ایجاد کند. ایدة تجمیع کارت‌های هوشمند در یک کارت و ایجاد کارت هوشمند چند‌منظوره بهترین گزینه برای رفع این مشکل است. اما طراحی چنین کارتی نیازمند مطالعه و بررسی نیاز‌های افراد در دولت الکترونیکی و در نظر گرفتن عوامل مختلف است. در قسمت بعدی مقاله، راهکارهایی جهت تجمیع کارت‌های هوشمند در کشور و ارائة یک کارت هوشمند چند‌منظوره ملی ارایه می‌شود
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۳:۵۱
Shahram Ghasemi
از کشف ابررسانایی در سال 1911 میلادی تا سال 1986 ، باور عموم بر آن بود که ابررسانایی فقط می تواند در فلزاتی در دماهای بسیار پایین وجود داشته باشد، که فقط در دماهای حداکثر 25 درجه بالای صفر مطلق اتفاق می افتاد. با کشف ابررسانایی در دماهای بالاتر در سال 1986 ، در موادی که تقریبا ضد فرو مغناطیسی بودند، و در هواپیماهای شامل a nearly square array of اتم های مس و اکسیژن، فصل جدیدی در علم فیزیک باز کرد. حقیقتا، درک ظاهر شدن ابررسانایی در دماهای بالا(حداکثر دمای 160 کلوین) یک مساله ی بزرگ برای بحث کردن می باشد. تا آن جا که امروزه بیش از ده هزار محقق روی این موضوع تحقیق و بررسی انجام می دهند.پس از مقدمه ای بر مفاهیم پایه ی فلزات معمولی و مرسوم، دمای پایین، و ابررسانایی، مروری بر نتایج مشاهدات انجام شده در دهه ی گذشته خواهم داشت ، که نشان می دهند ابررساناهای دمای بالای فلزات عجیبی با خواص غیرعادی بسیار بالای ابررسانایی می باشند. سپس، پیشرفت های نظری اخیری را شرح خواهم داد که طبیعت چنین فلزات عجیب را آشکار می سازد، و به شدت این پیشنهاد را که "تعامل مغناطیسی بین تحریکات ذره ی quasi مسطح است که رفتار حالت عادی آن ها را به هم می زند و باعث روی دادن حالت ابررسانایی در دماهای بالا می شود" پشتیبانی و تایید می کنند.در سال 1911 ، H. Kamerlingh-Onnes هنگام کار کردن در آزمایشگاه دمای پایین خود کشف کرد که در دمای چند درجه بالای صفر مطلق، جریان الکتریسیته می تواند بدون هیچ اتلاف اختلاف پتانسیل در فلز جیوه جریان پیدا کند. او این واقعه ی منحصر به فرد را "ابررسانایی" (Superconductivity) نامید. هیچ نظریه ای برای توضیح این رخداد در طول پنجاه و شش سال بعد از کشف ارائه نگردید. تا وقتی که در 1957 ، در دانشگاه الینویس ، سه فیزیکدان : John Bardeen ، Leon Cooper ، و Robert Schrieffer نظریه ی میکروسکوپی خود ارائه کردن که بعدا با نام تئوری BCS (حروف ابتدایی نام محققان) شناخته شد. سومین رخداد مهم در تاریخ ابررسانایی در سال 1986 اتفاق افتاد، وقتی که George Bednorz و Alex Mueller ، در حال کار کردن در آزمایشگاه IBM نزدیک شهر زوریخ سوئیس، یک کشف مهم دیگر کردند :ابررسانایی در دماهای بالاتر از دماهایی که قبلا برای ابررسانایی شناخته شده بودند در فلزاتی کاملا متفاوت از آنچه قبلا فلز ابررسانا شناخته می شود. این کشف باعث ایجاد زمینه ی جدید ی در علم فیزیک شد : مطالعهابررسانایی دمای بالا.در این مقاله، که برای غیر متخصص ها تنظیم گشته است، این را که ما چقدر در فهم دمای بالا پیشرفت کرده ایم را توضیح خواهم داد و درباره چشم انداز های آینده ی توسعه ی یک نظریه ی میکروسکوپی بحث خواهم کرد. با مروری بر برخی مفاهیم پایه ای، نظریه ی فلزات را شروع می کنیم؛ برخی اقدامات که منجر به ارائه ی نظریه BCS گشت، را توضیح می دهیم؛ و کمی در باره ی تئوری BCS بحث خواهیم کرد و آن را توضیح خواهیم داد. سپس مختصرا در باره ی پیشرفت هایی که به فهم ما از ابررسانایی و ابرسیالی، در جهان ارائه شده است، بحث خواهیم کرد، پیشرفت هایی که بوسیله الهام از تئوری BCS بدست آمده اند. که شامل کشف رده های زیادی از مواد ابرسیال می باشد، از هلیوم 3 مایع که چند میلی درجه بالاتر از صفر مطلق به حالت ابرسیالی در می آید تا ماده ی نوترون موجود در پوسته ی سیاره ی نوترون، که در چند میلیون درجه به حالت ابرسیالی در می آید. سپس درباره ی تاثیرات کشف مواد ابررسانای دمای بالا بحث خواهیم کرد ، و برخی نتایج تجربی، کلیدی را جمع بندی خواهیم کرد. سپس یک مدل برای ابررسانایی دمای بالا ارائه خواهم داد ، نزدیک به نظریه ی ضد فرومغناطیسی مایع فرمی ، که به نظر دارای توانایی ارائه ی مقدار زیادی از خواص غیرعادی حالت معمولی مواد ابررسانای سطح بالا می باشد. من با یک توضیح تجربی برای خواص جالب توجه حالت عادی ابررساناهای پیش بینی شده و در دست بررسی جمع بندی و نتیجه گیری می کنم، که یک رده جالب از مواد را معرفی می کند : مواد قابل تطبیق پیچیده . که در آن بازخورد غیرخطی طبیعی، چه مثبت و چه منفی، نقشی حیاتی در تعیین رفتار سیستم بازی می کنند. ابررساناهای مرسوم در سخنرانی نوبل در سال 1913 ، Kammerlingh-Onnes گزارش داد که "جیوه در 4.2 درجه کلوین به حالت جدیدی وارد می شود، حالتی که با توجه به خواص الکتریکی آن، می تواند ابررسانایی نام بگیرد. او گزارش داد که این حالت می تواند به وسیله ی اعمال میدان مغناطیسی به اندازه ی کافی بزرگ از بین برود. در حالی که یک جریان القاء شده در یک حلقه بسته ابررسانا به مدت زمان فوق العاده زیادی باقی می ماند و از بین نمی رود. او این رخداد را به طور عملی با آغاز یک جریان ابررسانایی در یک سیم پیچ در آزمایشگاه لیدن، و سپس حمل سیم پیچ همراه با سرد کننده ای که آن را سرد نگه می داشت به دانشگاه کمبریج به عموم نشان داد.این موضوع که ابررسانایی مساله ای به این مشکلی ارائه کرد که 46 سال طول کشید تا حل شود، خیلی شگفت آور می باشد. دلیل اول این می تواند باشد که جامعه ی فیزیک تا حدود بیست سال مبانی علمی لازم برای ارائه ی راه حل برای این مسئله را نداشت : تئوری کوانتوم فلزات معمولی. دوم اینکه، تا سال 1934 هیچ آزمایش اساسی در این زمینه انجام نشد. سوم اینکه، وقتی مبانی عملی لازم بدست آمد، به زودی واضح شد انرژی مشخصه وابسته به تشکیل ابررسانایی بسیار کوچک می باشد، حدود یک میلیونیم انرژی الکترونیکی مشخصه ی حالت عادی. بنابراین، نظریه پردازان توجه شان را به توسعه ی یک تفسیر رویدادی از جریان ابررسانایی جلب کردند. این مسیر را Fritz London رهبری می کرد. کسی که در سال 1953 به نکته ی زیر اشاره کرد :"ابررسانایی یک پدیده کوانتومی در مقیاس ماکروسکوپی می باشد ... با جداسازی حالت حداقل انرژی از حالات تحریک شده بوسیله ی وقفه های زمانی." و اینکه "diamagntesim یک مشخصه بنیادی می باشد." اجازه بدهید کمی درباره ی مبانی علمی کوانتومی بحث کنیم. الکترون ها در فلز در پتانسیل متناوب تولید شده از نوسان یون ها حول وضعیتشان حرکت می کنند. حرکت یون ها را می توان بوسیله ی مد های جمعی کوانتیزه شده ی آنها، فونون ها، توجیه کرد. سپس در طی توسعه ی نظریه ی کوانتوم، نظریه ی پاولی اصل انفجار وجود دارد ، که معنای آن بیانگر مفهوم آن است و آن اینکه - الکترونها به صورت اسپین نیمه کامل ذاتی (half integral intrinsic spin) قرار می گیرند، و در نتیجه هیچ الکترونی نمی تواند طوری قرار بگیرد که عدد کوانتوم آنها با هم یکی باشد. ذراتی که به صورت اسپین نیمه کامل ذاتی قرار می گیرند با نام فرمیون ها (fermions) شناخته می شوند، به خاطر گرامیداشت کار های فرمی (Fermi) که ، همراه با دیاک (Diac) ، نظریه ی آماری رفتار الکترون در دماهای محدود را توسعه دادند، این تئوری با نام Fermi-Diac statistics شناخته می شود. در توضیح فضای اندازه حرکت یک فلز ساده، حالت پایه یک کره در فضای اندازه ی حرکت می باشد، که اندازه ی شعاع آن، pf بوسیله ی چگالی فلز تعیین می گردد. انرژی خارجی ترین الکترون ها، در مقایسه با انرژی گرمایی میانگین آن ها، Kt بسیار بزرگ می باشد. به عنوان نتیجه، تنها بخش کوچکی از الکترون ها، در بالاتر از حالت پایه تحریک می شوند. الکترون ها با هم دیگر ( قانون کلمب ) و با فونون ها تعامل می کنند و رابطه دارند. تحریکات ابتدائی آن ها ذرات quasi ، (quasiparticles) می باشند ، الکترون ها با ضافه ی ابر الکترونی وابسته به آنها و فونون هایی که هنگام حرکت از میان شبکه الکترون را همراهی می کند. یک بحث و مذاکره ی ابتدائی نشان می دهد که طول عمر یک quasiparticle تحریک شده بالای سطح فرمی ( سطح کره ی فرمی ) تقریبا برابر می باشد. مساله و مشکلی که برای نظریه پردازان در رابطه با این مساله پیش آمده، فهم چگونگی تحمل پذیری الکترون های تعامل کننده هنگام رفتن به حالت ابررسانایی ، می باشد. این امر چگونه انجام می شود ؟ توضیح ریاضی مناسب برای این امر چه می باشد ؟ یک کلید راهنمای بسیار لازم در سال 1950 میلادی بدست آمد، وقتی محققان در Nationa Bearue of Standards و دانشگاه روتگرز کشف کردند که دمای انتقال به حالت ابررسانایی سرب بستگی به جرم ایزوتوپ آن، یعنی M ، دارد ، و رابطه ی عکس با M1/2 دارد. از آنجایی که انرژی لرزشی شبکه ای همان بستگی را با M1/2 دارد، کوانتای پایه ی آنها، فونون ها ، باید نقشی در ظهور و ایجاد حالت ابررسانایی بازی کند. در سال های بعدی، Herber Frohlich ، که از پوردو از دانشگاه لیورپول بازدید می کرد، و John Bardeen کسی که آن زمان در آزمایشگاه های بل کار می کرد، تلاش کردند نظریه ای با استفاده از تعامل الکترون ها و فونون ها ارائه بدهند، ولی شکست خوردند و موفق نشدند. کار انجام شده توسط آن ها را می توان به کمک دیاگرام های معرفی شده توسط ریچارد فاینمن به تصویر کشید.سپس Frohlich احتمال دوم را در نظر گرفت، حالتی که در آن یک الکترون یک فونون را آزاد می کند و الکترون دومی آن فونون را جذب می کند. این تعامل فونون القایی می تواند برای الکترون های نزدیک سطح فرمی جذاب باشد. این یک معادله فلزی waterbed می باشد : دو شخص که یک waterbed را به اشتراک می گذارند، تمایل دارند تا به مرکز آن جذب شوند، همان طوری که روند القاء الکترون ها را جذب می کند. (یک شخص تورفتگی را در waterbed القاء می کند، تورفتگیی که شخص دوم را جذب می کند.) تعامل مطالعه شده توسط Frohlich در نگاه جذاب و زیبا به نظر می رسد، که هم جدید بود و هم ذاتا تناسب درستی با جرم ایزوتوپی، M ، داشت. اگر چه مشکلی بزرگ در درک چگونگی نقش بازی کردن آن وجود داشت، از آن جا که تعامل پایه ای کلمب (Coulomb) بین الکترون ها دفع کننده می باشد، و خیلی قوی تر می باشد. همانطور که لاندو (Laundau) قرار داد : "شما نمی توانید قانون کولمب را لغو کنید." این اشکالی بود که John Bardeen و نویسنده ی این مقاله، دیوید پاینس (David Pines) (هنگامی که اولین دانشجوی دکترا در دانشگاه ایلیونیس در سال های 1952-1955 بود) ، آن را مورد انتقاد قرار دادند. چیزی که آن ها پیدا کردند، به وسیله ی توسعه ی یک راهبرد که David Bohm و David Pines قبلا برای فهم تعامل های جفت الکترون ها در فلزات توسعه داده بودند، این بود که "پیام ، متوسط است ." ("The Medium is the message". وقتی آن ها اثر رویه ی به پرده در آوردن الکترونیکی (Electronic Screening) روی هر دو تعامل الکترون-الکترون و الکترون-آهن را در نظر گرفتند، فهمیدند که حضور جزء تشکیل دهنده ی دومی، یونها ، یک تعامل جذاب شبکه ای را بین یک جفت الکترون که تفاوت انرژی آن ها از انرژی یک فونون بنیادین کمتر می باشد، ممکن می سازد . که در آن ثابت دی الکتریک استاتیک وابسته به watervector می باشد، انرژی فونون می باشد، q انتقال اندازه ی حرکت می باشد، و تفاوت بین انرژی الکترون ها می باشد. ترتیب ها آن به صورت جزئی تر توسط Leon Cooper مطالعه شده است . او فهمید که به خاطر این جذابیت شبکه ای، سطح فرمی حالت عادی می تواند در دماهای پائین به تشکیل جفت الکترون هایی با اسپین و اندازه حرکت مخالف، بی ثبات شود. با کار او، راه حلی برای ابررسانایی نزدیک بود. در سال 1957 میلادی، هنگامی که Bob Schrieffer ، کسی که دانشجوی فارغ التحصیلی Bardeen در دانشگاه الیونیس بود، فهمید که توضیح میکروسکوپی داوطلب حالت ابررسانایی، می تواند با به کار بردن راهبردی که قبلا برای پلارن ها توسعه یافته بود، توسعه یابد. در هفته های بعدی، Bardeen ، Cooper ، و Schrieffer نظریه ی میکروسکوپی ابررسانایی خود، تئوری BCS را ارائه دادند. که این تئوری در توضیح و تفسیر رویداد ها ی ابررسانایی موجود و هم چنین در پیش گویی رویداد های جدید بسیار موفق بود. در جولای 1959 ، در اولین کنفرانس عظیم در رابطه با ابررسانایی بعد از ارائه ی نظریه ی BCS ، (در دانشگاه کمبریج) ، David Schoenberg کنفرانس را با این جمله آغاز کرد : "حالا ببینیم تا چه حدی مشاهدات با حقایق نظری جور در می آیند ..."  کاربردها ابر رساناهای دمای پایین امروزه در ساخت آهنرباهای ویژه طیف سنجهای رزونانس مغناطیسی هسته ، رزونانس مغناطیسی برای مقاصد تشخیص طبی ، شتاب دهنده ذره ها ، ترنهای سریع مغناطیسی و انواع ابزارهای رسانایی الکترونیکی بکار میرود از دیگر کاربردهای آنها می توان به دستگاه های عکسبرداری تشدید مغناطیسی هسته و قطارهای جدیدی که توسط نیروهای مغناطیسی در هوا معلق هستند و با سرعت 400 کیلومتر بر ساعت حرکت می کنند، اشاره کرد. . اما برای اینکه ابررساناهای دمای بالا در کاربردهای میدان مغناطیسی در دمای بالا رقابت کنند ، هنوز زمان لازم دارد ، این بعلت دشواری در تولید انبوه و با کیفیت بالاست . اگر چه در حال حاضر ، بازار ابررساناهای دمای بالا رونق کمی دارد ، گمان میرود که در خلال دو دهه آینده کاربرد آن فراگیر و پررونق شود .
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۳:۵۱
Shahram Ghasemi
1- (Joint Electron Device Engineering Council (JEDEC :      فرم یا مد اصلی کد گذاری در این روش به صورت زیر است ( از چپ به راست بخوانید): ( پسوند ) ، شماره سریال ، حرف ، عدد[digit, letter, serial number, [suffix           قسمت عدد: در این قسمت همیشه عددی که یکی کمتر از تعداد پایه های ترانزیستور است قرار می گیرد. یعنی برای ترانزیستورهای 3 پایه عدد 2 و اگر ترانزیستور 4 پایه ای وجود داشته باشد عدد 3. توجه داشته باشید که اعداد 4 و 5 به اپتوکوپلرها مربوط می شوند نه به ترانزیستورها. بنابراین شاید بتوان گفت که برای ترانزیستورها همیشه در این قسمت عدد 2 قرار می گیرد.       قسمت حرف: در این قسمت همیشه حرف  "N" قرار می گیرد.       قسمت شماره سریال: در این قسمت اعدادی از 100 تا 9999 قرار میگیرد و هیچ اطلاعاتی بجز زمان تقریبی ابداع و معرفی ترانزیستور را به ما نمی دهد. مثلا ترانزیستوری که سریال نامبرش 904 باشد زودتر از ترانزیستوری که سریال نامبرش 2221 است ، ساخته شده است.       قسمت پسوند: این قسمت اختیاری است و محدوده بهره ( بتا hfe ) ی ترانزیستور را مشخص می سازد. به این صورت که حرف A برای ترانزیستورهای با بهره کم ، حرف B برای ترانزیستورهای با بهره متوسط ، حرف C برای ترانزیستورهای با بهره بالا و اگر دراین قسمت هیچ حرفی نباشد ترانزیستور می تواند هر یک از بهره های فوق را داشته یاشد.       مثال: 2N3819, 2N2221A, 2N904   2 - نام گذاری ژاپنی (Japanese Industrial Standard (JIS :       فرم یا مد اصلی کد گذاری در این روش به صورت زیر است ( از چپ به راست بخوانید): ( پسوند) ، شماره سریال ، دو حرف ، عددdigit, two letters, serial number, [suffix]       قسمت عدد: در اینجا نیز عددی که یکی کمتر از تعداد پایه ها است قرار می گیرد. که عموما عدد 2 است.       قسمت دوحرفی: این دو حرف محدوده کاربرد و نوع قطعه را به صورت کدهای زیر مشخص می سازند: SA: PNP HF transistorSB: PNP AF transistorSC: NPN HF transistor SD: NPN AF transistorSE: Diodes SF: ThyristorsSG: Gunn devices SH: UJTSJ: P-channel FET/MOSFET SK: N-channel FET/MOSFETSM: Triac SQ: LEDSR: Rectifier SS: Signal diodesST: Avalanche diodes SV: VaricapsSZ: Zener diodes        قسمت شماره سریال: این قسمت نیز همانند روش قبل می باشد و از عدد 10 شروع می شود تا 9999 .       قسمت پسوند: این قسمت اختیاری است و هیچ گونه اطلاعاتی از قطعه به ما نمی دهد. در این روش به این دلیل که کد ترانزیستورها با 2S شروع می شود در بعضی موارد ممکن است که این دو حذف شوند مثلا به جای اینکه روی ترانزیستور نوشته شده باشد 2SC733 ، بطور خلاصه نوشته می شود C 733.       مثال: 2SA1187, 2SB646, 2SC733  3 - Pro-electron:      فرم یا مد اصلی کد گذاری در این روش به صورت زیر است ( از چپ به راست بخوانید): ( پسوند ) ، شماره سریال ، (یک حرف) ، دو حرفtwo letters, [letter], serial number, [suffix]       قسمت دو حرفی: اولین حرف نوع عنصر و ماده ای که ترانزیستور از آن ساخته شده است را مشخص می سازد: A = Ge         (ژرمانیوم)B = Si           (سیلیکون)    C = GaAs     (گالیم آرسنیک)R = compound materials  (عناصر مرکب)  با توجه به این حروف کاملا واضح است که  کد  اکثر ترانزیستورها و قطعات نیمه هادی دیگردر این روش با حرف B شروع می شود. دومین حرف کاربرد قطعه را نشان می دهد: C: transistor, AF, small signalD: transistor, AF, powerF: transistor, HF, small signalL: transistor, HF, powerU: transistor, power, switchingA: Diode RF Y: Rectifier E: Tunnel diodeZ: Zener, or voltage regulator diodeB: VariacK: Hall effect deviceN: OptocouplerP: Radiation sensitive deviceQ: Radiation producing deviceR: Thyristor, Low powerT: Thyristor, Power       قسمت حرف اختیاری: این حرف کاربرد صنعتی یا حرفه ای  تا تجاری قطعه را مشخص می سازد و یکی از حروف W,X,Y,Z می باشد.       قسمت شماره سریال: سریال نامبر از عدد 100 شروع می شود تا 9999.       قسمت پسوند: این قسمت درست مانند قسمت پسوند روش اول یعنی JEDEC می باشد.       مثال: BC108A, BAW68, BF239, BFY51 , BC548 کارخانه های سازنده ترانزیستور و دیگر قطعات نیمه هادی به دلایل تجاری به ابتدای سه روش مذکور یک پیشوند اضافه می کنند که معرف کارخانه سازنده ؛ نوع بسته بندی و کاربرد قطعه است. معمول ترین این پیشوندها عبارتند از: MJ: Motorolla power, metal caseMJE: Motorolla power, plastic caseMPS: Motorolla low power, plastic caseMRF: Motorolla HF, VHF and microwave transistorRCA: RCARCS: RCSTIP: Texas Instruments power transistor (platic case)TIPL: TI planar power transistorTIS: TI small signal transistor (plastic case)ZT: FerrantiZTX: Ferranti  مانند : ZTX302, TIP31A, MJE3055, TIS43
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۳:۵۱
Shahram Ghasemi
ظرفیت خازن و ولتاژ مناسب برای خازن ها را کارخانه های سازنده معمولاً روی بدنه ی آنها می نویسند. معمولاً 3 سیستم کد گذاری برای خازن ها وجود دارد: 1- بر روی خازن های بزرگ (معمولاً الکترولیتی) ظرفیت و ولتاژ به صورت مستقیم و واضح نوشته شده، مثلاً خازن زیر 10V و(1000میکروفاراد)1000?F است. ?(میکرو)= 0.000,001= 6- ^10 n (نانو) = 0.000,000,001 =9- ^10 p یا?? (پیکو) = 0.000,000,000,001=12- ^10   نکته ی مهم: همان طور که می بینید روی بدنه ی خازن های الکترولیت، یک نوار کشیده شده که به وسیله ی آن پایه ی – مشخص شده، در این خازن های اگر جای + و -  را اشتباه وصل کنیم در اثر پدیده ی فرو شکست خازن می ترکد! در خازن های الکترولیتی نیز، خازن ذوب می‌شود! 2- در خازن های کوچک مثل خازن های عدسی به خاطر کمبود جا اطلاعات رو به صورت خلاصه تر می نویسند. مثلاً روی یک خازن عدد 103J را می بینید، این سیستم مشابهت زیادی با سیستم کد گذاری مقاومت ها دارد، یعنی 2 رقم اول از سمت چپ ، ارقام اول و دوم ،و رقم سوم نیز یک ضریب طبق جدول زیر می باشد. حرف لاتینی که در آخر نوشته می شود نیز تلورانس یا ضریب خطا می باشد(در خیلی از مقاومت ها اصلاً نوشته نمی شود). در زیر این اعداد گاهی ممکنه یک ولتاژ مثل 10V نوشته شود که ولتاژِ کاری خازن است.  رقم سوم (Third Digit) ضریب (Multiplier) 0 1 = 100 1 10 = 101 2 100 = 102 3 1000 =103 4 10000 =104 5 100000 =105 6 یا 7 استفاده نمی شوند 8 0.01 9 0.1 2رقم اول ،ضربدر ضریبی که رقم سوم آن را نشان می‌دهد، می‌شود ظرفیت خازن بر حسب پیکوفاراد به عنوان مثال خازن زیر 10،0000پیکو فاراد می باشد  و 3- این سیستم کد گذاری خازن ها دقیقاً مشابه همان مقاومت هاست، یعنی ظرفیت خازن با حلقه ها رنگی نمایش داده می شود. این سیستم بسیار کم کاربرد می باشد و لذا ما وارد جزئیات بیشتر آن نمی شویم. انواع به هم بستن خازن ها خازن ها نیز مانند مقاومت ها به 2 صورت به هم بسته می شوند:سری و موازی خازن های سری  در به هم بستن خازن ها به صورت متوالی یا سری ظرفیت معادل مجموعه از فرمول زیر محاسبه می شود  به عنوان مثال ظرفیت معادل مجموعه ی روبرو برابر است با: نکته: در خازن های سری ، باری که روی همه ی خازن ها ذخیره می شود با هم برابر است(ظرفیت خازن اهمیتی ندارد). توضیح این مطلب نیاز به مقدمات زیادی دارد که فعلاً ما نیازی به آن نداریم. خازن های موازی در به هم بستن موازی خازن ها، ظرفیت خازن ها به صورت مستقیم با هم جمع می شوند، یعنی: C=4+3+12=19: برای مثال ظرفیت معادل مجموعه ی زیر برابر است با نکته: همونطور که می بینید در حالت موازی، ولتاژی که بر روی پایه های همه ی خازن ها قرار می گیرد مساویست.زیرا 2 سر همه‌ی خازن‌ها به یکدیگر متصل شده است. اگر در یک مدار چندین خازن به صورت سری و موازی قرار گرفته بودند، ابتدا خازن های موازی را حذف و آنگاه ظرفیت معادل بقیه ی خازن ها را محاسبه می کنیم. به مثال دقت کنید: یکی از کاربرد‌های بسیار مهم خازن‌ها در کار ما حذف Noise‌ها و امواج زاید می‌باشد، این روش نسبتاً پیچیده می‌باشد ، در جلسات آتی در باره‌ی این روش نیز توضیح خواهیم داد.
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۳:۵۱
Shahram Ghasemi